Input-to-state stable finite horizon MPC for neutrally stable linear discrete-time systems with input constraints

نویسندگان

  • Jung-Su Kim
  • Tae-Woong Yoon
  • Ali Jadbabaie
  • Claudio De Persis
چکیده

MPC or model predictive control is representative of control methods which are able to handle inequality constraints. Closed-loop stability can therefore be ensured only locally in the presence of constraints of this type. However, if the system is neutrally stable, and if the constraints are imposed only on the input, global asymptotic stability can be obtained; until recently, use of infinite horizons was thought to be inevitable in this case. A globally stabilizing finite-horizon MPC has lately been suggested for neutrally stable continuoustime systems using a non-quadratic terminal cost which consists of cubic as well as quadratic functions of the state. The idea originates from the so-called small gain control, where the global stability is proven using a non-quadratic Lyapunov function. The newly developed finite-horizon MPC employs the same form of Lyapunov function as the terminal cost, thereby leading to global asymptotic stability. A discrete-time version of this finite-horizon MPC is presented here. Furthermore, it is proved that the closed-loop system resulting from the proposed MPC is ISS (Input-to-State Stable), provided that the external disturbance is sufficiently small. The proposed MPC algorithm is also coded using an SQP (Sequential Quadratic Programming) algorithm, and simulation results are given to show the effectiveness of the method. © 2005 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Finite-time Control of Positive Linear Discrete-time Systems

This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...

متن کامل

Robust Model Predictive Control for a Class of Discrete Nonlinear systems

This paper presents a robust model predictive control scheme for a class of discrete-time nonlinear systems subject to state and input constraints. Each subsystem is composed of a nominal LTI part and an additive uncertain non-linear time-varying function which satisfies a quadratic constraint. Using the dual-mode MPC stability theory, a sufficient condition is constructed for synthesizing the ...

متن کامل

A Globally Stabilizing Receding Horizon Controller for Neutrally Stable Linear Systems with Input Constraints

It is well known that exponentially unstable linear systems can not be globally stabilized in the presence of input constraints. In the case where the linear system is neutrally stable, one can achieve global asymptotic stability using a particular Control Lyapunov Function (CLF)based controller. Using this particular CLF as terminal cost in a receding horizon scheme, we obtain a receding horiz...

متن کامل

Global consensus for discrete-time multi-agent systems with input saturation constraints

In this paper, we consider the global consensus problem for discrete-time multi-agent systems with input saturation constraints under fixed undirected topologies. We first give necessary conditions for achieving global consensus via a distributed protocol based on relative state measurements of the agent itself and its neighboring agents. We then focus on two special cases, where the agent mode...

متن کامل

Analysis of Applying Event-triggered Strategy on the Model Predictive Control

In this paper, the event-triggered strategy in the case of finite-horizon model predictive control (MPC) is studied and its advantages over the input to state stability (ISS) Lyapunov based triggering rule is discussed. In the MPC triggering rule, all the state trajectories in the receding horizon are considered to obtain the triggering rule. Clearly, the finite horizon MPC is sub-optimal with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Systems & Control Letters

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2006